Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 69
1.
Plant Signal Behav ; 19(1): 2326238, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38493505

Mitogen-activated protein kinase (MPK) cascades are essential signal transduction components that control a variety of cellular responses in all eukaryotes. MPKs convert extracellular stimuli into cellular responses by the phosphorylation of downstream substrates. Although MPK cascades are predicted to be very complex, only limited numbers of MPK substrates have been identified in plants. Here, we used the kinase client (KiC) assay to identify novel substrates of MPK3 and MPK6. Recombinant MPK3 or MPK6 were tested against a large synthetic peptide library representing in vivo phosphorylation sites, and phosphorylated peptides were identified by high-resolution tandem mass spectrometry. From this screen, we identified 23 and 21 putative client peptides of MPK3 and MPK6, respectively. To verify the phosphorylation of putative client peptides, we performed in vitro kinase assay with recombinant fusion proteins of isolated client peptides. We found that 13 and 9 recombinant proteins were phosphorylated by MPK3 and MPK6. Among them, 11 proteins were proven to be the novel substrates of two MPKs. This study suggests that the KiC assay is a useful method to identify new substrates of MPKs.


Arabidopsis Proteins , Arabidopsis , Humans , Mitogen-Activated Protein Kinases/metabolism , Arabidopsis/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Arabidopsis Proteins/metabolism , Phosphorylation , Peptides/metabolism , Gene Expression Regulation, Plant
2.
Int J Mol Sci ; 25(4)2024 Feb 17.
Article En | MEDLINE | ID: mdl-38397062

The ubiquitin/26S proteasome system is a crucial regulatory mechanism that governs various cellular processes in plants, including signal transduction, transcriptional regulation, and responses to biotic and abiotic stressors. Our study shows that the RING-H2-type E3 ubiquitin ligase, Arabidopsis Tóxicos en Levadura 2 (ATL2), is involved in response to fungal pathogen infection. Under normal growth conditions, the expression of the ATL2 gene is low, but it is rapidly and significantly induced by exogenous chitin. Additionally, ATL2 protein stability is markedly increased via chitin treatment, and its degradation is prolonged when 26S proteasomal function is inhibited. We found that an atl2 null mutant exhibited higher susceptibility to Alternaria brassicicola, while plants overexpressing ATL2 displayed increased resistance. We also observed that the hyphae of A. brassicicola were strongly stained with trypan blue staining, and the expression of A. brassicicola Cutinase A (AbCutA) was dramatically increased in atl2. In contrast, the hyphae were weakly stained, and AbCutA expression was significantly reduced in ATL2-overexpressing plants. Using bioinformatics, live-cell confocal imaging, and cell fractionation analysis, we revealed that ATL2 is localized to the plasma membrane. Further, it is demonstrated that the ATL2 protein possesses E3 ubiquitin ligase activity and found that cysteine 138 residue is critical for its function. Moreover, ATL2 is necessary to successfully defend against the A. brassicicola fungal pathogen. Altogether, our data suggest that ATL2 is a plasma membrane-integrated protein with RING-H2-type E3 ubiquitin ligase activity and is essential for the defense response against fungal pathogens in Arabidopsis.


Alternaria , Arabidopsis Proteins , Arabidopsis , Plant Immunity , Alternaria/immunology , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chitin/metabolism , Gene Expression Regulation, Plant , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
3.
Plant Biotechnol J ; 22(1): 19-36, 2024 Jan.
Article En | MEDLINE | ID: mdl-37794706

Prime editing (PE) technology utilizes an extended prime editing guide RNA (pegRNA) to direct a fusion peptide consisting of nCas9 (H840) and reverse transcriptase (RT) to a specific location in the genome. This enables the installation of base changes at the targeted site using the extended portion of the pegRNA through RT activity. The resulting product of the RT reaction forms a 3' flap, which can be incorporated into the genomic site through a series of biochemical steps involving DNA repair and synthesis pathways. PE has demonstrated its effectiveness in achieving almost all forms of precise gene editing, such as base conversions (all types), DNA sequence insertions and deletions, chromosomal translocation and inversion and long DNA sequence insertion at safe harbour sites within the genome. In plant science, PE could serve as a groundbreaking tool for precise gene editing, allowing the creation of desired alleles to improve crop varieties. Nevertheless, its application has encountered limitations due to efficiency constraints, particularly in dicotyledonous plants. In this review, we discuss the step-by-step mechanism of PE, shedding light on the critical aspects of each step while suggesting possible solutions to enhance its efficiency. Additionally, we present an overview of recent advancements and future perspectives in PE research specifically focused on plants, examining the key technical considerations of its applications.


Chromosome Inversion , RNA, Guide, CRISPR-Cas Systems , Alleles , DNA Repair , Gene Editing , DNA , CRISPR-Cas Systems
4.
Heliyon ; 9(12): e22679, 2023 Dec.
Article En | MEDLINE | ID: mdl-38089995

Portable biosensors are emerged as powerful diagnostic tools for analyzing intricately complex biological samples. These biosensors offer sensitive detection capabilities by utilizing biomolecules such as proteins, nucleic acids, microbes or microbial products, antibodies, and enzymes. Their speed, accuracy, stability, specificity, and low cost make them indispensable in forensic investigations and criminal cases. Notably, portable biosensors have been developed to rapidly detect toxins, poisons, body fluids, and explosives; they have proven invaluable in forensic examinations of suspected samples, generating efficient results that enable effective and fair trials. One of the key advantages of portable biosensors is their ability to provide sensitive and non-destructive detection of forensic samples without requiring extensive sample preparation, thereby reducing the possibility of false results. This comprehensive review provides an overview of the current advancements in portable biosensors for the detection of sensitive materials, highlighting their significance in advancing investigations and enhancing sensitive sample detection capabilities.

5.
Plant Signal Behav ; 18(1): 2270835, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37902267

Quercetin is a flavonol belonging to the flavonoid group of polyphenols. Quercetin is reported to have a variety of biological functions, including antioxidant, pigment, auxin transport inhibitor and root nodulation factor. Additionally, quercetin is known to be involved in bacterial pathogen resistance in Arabidopsis through the transcriptional increase of pathogenesis-related (PR) genes. However, the molecular mechanisms underlying how quercetin promotes pathogen resistance remain elusive. In this study, we showed that the transcriptional increases of PR genes were achieved by the monomerization and nuclear translocation of nonexpressor of pathogenesis-related proteins 1 (NPR1). Interestingly, salicylic acid (SA) was approximately 2-fold accumulated by the treatment with quercetin. Furthermore, we showed that the increase of SA biosynthesis by quercetin was induced by the transcriptional increases of typical SA biosynthesis-related genes. In conclusion, this study strongly suggests that quercetin induces bacterial pathogen resistance through the increase of SA biosynthesis in Arabidopsis.


Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Quercetin/pharmacology , Quercetin/metabolism , Mutation , Gene Expression Regulation, Plant , Salicylic Acid/metabolism , Plant Diseases/microbiology
6.
Mol Biol Rep ; 50(11): 9731-9738, 2023 Nov.
Article En | MEDLINE | ID: mdl-37819497

BACKGROUND: Sesuvium portulacastrum is a facultative halophyte capable of thriving in a saline environment. Despite molecular studies conducted to unravel its salt adaptation mechanism, there is a paucity of information on the role of salt-responsive orthologs and microRNAs (miRNAs) in this halophyte. Here, we searched the orthology to identify salt-responsive orthologs and miRNA targets of Sesuvium using the Arabidopsis genome. METHODS: The relative fold change of orthologs, conserved miRNAs, and miRNA targets of Sesuvium was analyzed under 100 mM (LS) and 250 mM NaCl (HS) treatment at 24 h using qRT-PCR. The comparison between the expression of Sesuvium orthologs and Arabidopsis orthologs (Arabidopsis eFP browser database) was used to identify differentially expressed genes. RESULTS: Upon salt treatment, we found that SpCIPK3 (1.95-fold in LS and 2.90-fold in HS) in Sesuvium roots, and SpNHX7 (1.61-fold in LS and 6.39-fold in HS) and, SpSTPK2 (2.54-fold in LS and 7.65-fold in HS) in Sesuvium leaves were upregulated in a salt concentration-specific manner. In Arabidopsis, these genes were either downregulated or did not show significant variation, implicating its significance in the halophytic nature of Sesuvium. Furthermore, miRNAs like miR394a, miR396a, and miR397a exhibited a negative correlation with their targets-Frigida interacting protein 1, Cysteine proteinases superfamily protein, and Putative laccase, respectively under different salt treatments. CONCLUSION: The study revealed that the high salt tolerance in Sesuvium is associated with distinct transcriptional reprogramming, hence, to gain holistic mechanistic insights, global-scale profiling is required.


Aizoaceae , Arabidopsis , MicroRNAs , Salt Tolerance/genetics , Arabidopsis/genetics , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism , Aizoaceae/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
7.
Int J Mol Sci ; 24(17)2023 Aug 23.
Article En | MEDLINE | ID: mdl-37685921

Various stresses can affect the quality and yield of crops, including vegetables. In this study, CRISPR/Cas9 technology was employed to examine the role of the ELONGATED HYPOCOTYL 5 (HY5) gene in influencing the growth of Chinese cabbage (Brassica rapa). Single guide RNAs (sgRNAs) were designed to target the HY5 gene, and deep-sequencing analysis confirmed the induction of mutations in the bZIP domain of the gene. To investigate the response of Chinese cabbage to endoplasmic reticulum (ER) stress, plants were treated with tunicamycin (TM). Both wild-type and hy5 mutant plants showed increased growth inhibition with increasing TM concentration. However, the hy5 mutant plants displayed less severe growth inhibition compared to the wild type. Using nitroblue tetrazolium (NBT) and 3,3'-diaminobenzidine (DAB) staining methods, we determined the amount of reactive oxygen species (ROS) produced under ER stress conditions, and found that the hy5 mutant plants generated lower levels of ROS compared to the wild type. Under ER stress conditions, the hy5 mutant plants exhibited lower expression levels of UPR- and cell death-related genes than the wild type. These results indicate that CRISPR/Cas9-mediated editing of the HY5 gene can mitigate growth inhibition in Chinese cabbage under stresses, improving the quality and yield of crops.


Brassica rapa , Brassica rapa/genetics , CRISPR-Cas Systems/genetics , Gene Editing , Hypocotyl , RNA, Guide, CRISPR-Cas Systems , Reactive Oxygen Species , Crops, Agricultural , Tunicamycin
8.
Plant Biotechnol J ; 21(12): 2458-2472, 2023 Dec.
Article En | MEDLINE | ID: mdl-37530518

Numerous staple crops exhibit polyploidy and are difficult to genetically modify. However, recent advances in genome sequencing and editing have enabled polyploid genome engineering. The hexaploid black nightshade species Solanum nigrum has immense potential as a beneficial food supplement. We assembled its genome at the scaffold level. After functional annotations, we identified homoeologous gene sets, with similar sequence and expression profiles, based on comparative analyses of orthologous genes with close diploid relatives Solanum americanum and S. lycopersicum. Using CRISPR-Cas9-mediated mutagenesis, we generated various mutation combinations in homoeologous genes. Multiple mutants showed quantitative phenotypic changes based on the genotype, resulting in a broad-spectrum effect on the quantitative traits of hexaploid S. nigrum. Furthermore, we successfully improved the fruit productivity of Boranong, an orphan cultivar of S. nigrum suggesting that engineering homoeologous genes could be useful for agricultural improvement of polyploid crops.


Crops, Agricultural , Polyploidy , Base Sequence , Chromosome Mapping/methods , Mutation , Phenotype , Crops, Agricultural/genetics , Genome, Plant/genetics , Gene Editing
9.
Biochem Biophys Res Commun ; 670: 94-101, 2023 08 30.
Article En | MEDLINE | ID: mdl-37290287

Protein phosphatase 2A (PP2A) is a key regulator of plant growth and development, but its role in the endoplasmic reticulum (ER) stress response remains elusive. In this study, we investigated the function of PP2A under ER stress using loss-of-function mutants of ROOTS CURL of NAPHTHYLPHTHALAMIC ACID1 (RCN1), a regulatory A1 subunit isoform of Arabidopsis PP2A. RCN1 mutants (rcn1-1 and rcn1-2) exhibited reduced sensitivity to tunicamycin (TM), an inhibitor of N-linked glycosylation and inducer of unfolded protein response (UPR) gene expression, resulting in less severe effects compared to wild-type plants (Ws-2 and Col-0). TM negatively impacted PP2A activity in Col-0 plants but did not significantly affect rcn1-2 plants. Additionally, TM treatment did not influence the transcription levels of the PP2AA1(RCN1), 2, and 3 genes in Col-0 plants. Cantharidin, a PP2A inhibitor, exacerbated growth defects in rcn1 plants and alleviated TM-induced growth inhibition in Ws-2 and Col-0 plants. Furthermore, cantharidin treatment mitigated TM hypersensitivity in ire1a&b and bzip28&60 mutants. These findings suggest that PP2A activity is essential for an efficient UPR in Arabidopsis.


Arabidopsis Proteins , Arabidopsis , Protein Phosphatase 2 , Unfolded Protein Response , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cantharidin/pharmacology , Endoplasmic Reticulum Stress , Gene Expression Regulation, Plant , Mutation , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism
10.
Comput Biol Chem ; 104: 107875, 2023 Jun.
Article En | MEDLINE | ID: mdl-37148678

The PI3K/Akt/mTOR is an essential intracellular signaling pathway in which the serine/threonine mTOR kinase portrays a major role in cell growth, proliferation and survival. The mTOR kinase is frequently dysregulated in a broad spectrum of cancers, thus making it a potential target. Rapamycin and its analogs (rapalogs) allosterically inhibit mTOR, thereby dodging the deleterious effects prompted by ATP-competitive mTOR inhibitors. However, the available mTOR allosteric site inhibitors exhibit low oral bioavailability and suboptimal solubility. Bearing in mind this narrow therapeutic window of the current allosteric mTOR inhibitors, an in silico study was designed in search of new macrocyclic inhibitors. The macrocycles from the ChemBridge database (12,677 molecules) were filtered for their drug-likeness properties and the procured compounds were subjected for molecular docking within the binding cleft between FKBP25 and FRB domains of mTOR. The docking analysis resulted with 15 macrocycles displaying higher scores than the selective mTOR allosteric site inhibitor, DL001. The docked complexes were refined by subsequent molecular dynamics simulations for a period of 100 ns. Successive binding free energy computation revealed a total of 7 macrocyclic compounds (HITS) demonstrating better binding affinity than DL001, towards mTOR. The consequent assessment of pharmacokinetic properties resulted in HITS with similar or better properties than the selective inhibitor, DL001. The HITS from this investigation could act as effective mTOR allosteric site inhibitors and serve as macrocyclic scaffolds for developing compounds targeting the dysregulated mTOR.


MTOR Inhibitors , Sirolimus , Sirolimus/pharmacology , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/metabolism , TOR Serine-Threonine Kinases , Binding Sites , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry
11.
Plant J ; 115(4): 952-966, 2023 08.
Article En | MEDLINE | ID: mdl-37165773

Adaptation to different soil conditions is a well-regulated process vital for plant life. AtHB23 is a homeodomain-leucine zipper I transcription factor (TF) that was previously revealed as crucial for plant survival under salinity conditions. We wondered whether this TF has partners to perform this essential function. Therefore, TF cDNA library screening, yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays were complemented with expression analyses and phenotypic characterization of silenced, mutant, overexpression, and crossed plants in normal and salinity conditions. We revealed that AtHB23, AtPHL1, and AtMYB68 interact with each other, modulating root development and the salinity response. The encoding genes are coexpressed in specific root tissues and at specific developmental stages. In normal conditions, amiR68 silenced plants have fewer initiated roots, the opposite phenotype to that shown by amiR23 plants. AtMYB68 and AtPHL1 play opposite roles in lateral root elongation. Under salinity conditions, AtHB23 plays a crucial positive role in cooperating with AtMYB68, whereas AtPHL1 acts oppositely by obstructing the function of the former, impacting the plant's survival ability. Such interplay supports the complex interaction between these TF in primary and lateral roots. The root adaptation capability is associated with the amyloplast state. We identified new molecular players that through a complex relationship determine Arabidopsis root architecture and survival in salinity conditions.


Arabidopsis Proteins , Arabidopsis , Plant Roots , Salt Tolerance , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Salt Tolerance/genetics
12.
J Hazard Mater ; 450: 131039, 2023 05 15.
Article En | MEDLINE | ID: mdl-36867909

Natural and anthropogenic causes are continually growing sources of metals in the ecosystem; hence, heavy metal (HM) accumulation has become a primary environmental concern. HM contamination poses a serious threat to plants. A major focus of global research has been to develop cost-effective and proficient phytoremediation technologies to rehabilitate HM-contaminated soil. In this regard, there is a need for insights into the mechanisms associated with the accumulation and tolerance of HMs in plants. It has been recently suggested that plant root architecture has a critical role in the processes that determine sensitivity or tolerance to HMs stress. Several plant species, including those from aquatic habitats, are considered good hyperaccumulators for HM cleanup. Several transporters, such as the ABC transporter family, NRAMP, HMA, and metal tolerance proteins, are involved in the metal acquisition mechanisms. Omics tools have shown that HM stress regulates several genes, stress metabolites or small molecules, microRNAs, and phytohormones to promote tolerance to HM stress and for efficient regulation of metabolic pathways for survival. This review presents a mechanistic view of HM uptake, translocation, and detoxification. Sustainable plant-based solutions may provide essential and economical means of mitigating HM toxicity.


Metals, Heavy , Soil Pollutants , Ecosystem , Soil Pollutants/metabolism , Plants/metabolism , Metals, Heavy/analysis , Biodegradation, Environmental , Soil
13.
Front Plant Sci ; 14: 1132959, 2023.
Article En | MEDLINE | ID: mdl-36938064

RNA methylation is an important post-transcriptional modification that influences gene regulation. Over 200 different types of RNA modifications have been identified in plants. In animals, the mystery of RNA methylation has been revealed, and its biological role and applications have become increasingly clear. However, RNA methylation in plants is still poorly understood. Recently, plant science research on RNA methylation has advanced rapidly, and it has become clear that RNA methylation plays a critical role in plant development. This review summarizes current knowledge on RNA methylation in plant development. Plant writers, erasers, and readers are highlighted, as well as the occurrence, methods, and software development in RNA methylation is summarized. The most common and abundant RNA methylation in plants is N6-methyladenosine (m6A). In Arabidopsis, mutations in writers, erasers, and RNA methylation readers have affected the plant's phenotype. It has also been demonstrated that methylated TRANSLATIONALLY CONTROLLED TUMOR PROTEIN 1-messenger RNA moves from shoot to root while unmethylated TCTP1-mRNA does not. Methylated RNA immunoprecipitation, in conjunction with next-generation sequencing, has been a watershed moment in plant RNA methylation research. This method has been used successfully in rice, Arabidopsis, Brassica, and maize to study transcriptome-wide RNA methylation. Various software or tools have been used to detect methylated RNAs at the whole transcriptome level; the majority are model-based analysis tools (for example, MACS2). Finally, the limitations and future prospects of methylation of RNA research have been documented.

14.
Life (Basel) ; 13(3)2023 Mar 03.
Article En | MEDLINE | ID: mdl-36983842

Bcl-2-associated anthanogene (BAG) family proteins regulate plant defense against biotic and abiotic stresses; however, the function and precise mechanism of action of each individual BAG protein are not yet clear. In this study, we investigated the biochemical and molecular functions of the Arabidopsis thaliana BAG2 (AtBAG2) protein, and elucidated its physiological role under stress conditions using mutant plants and transgenic yeast strains. The T-DNA insertion atbag2 mutant plants were highly susceptible to heat shock, whereas transgenic yeast strains ectopically expressing AtBAG2 exhibited outstanding thermotolerance. Moreover, a biochemical analysis of GST-fused recombinant proteins produced in bacteria revealed that AtBAG2 exhibits molecular chaperone activity, which could be attributed to its BAG domain. The relevance of the molecular chaperone function of AtBAG2 to the cellular heat stress response was confirmed using yeast transformants, and the experimental results showed that overexpression of the AtBAG2 sequence encoding only the BAG domain was sufficient to impart thermotolerance. Overall, these results suggest that the BAG domain-dependent molecular chaperone activity of AtBAG2 is indispensable for the heat stress response of Arabidopsis. This is the first report demonstrating the role of AtBAG2 as a sole molecular chaperone in Arabidopsis.

15.
Appl Biol Chem ; 66(1): 13, 2023.
Article En | MEDLINE | ID: mdl-36843874

CRISPR-Cas systems have been widely used in genome editing and transcriptional regulation. Recently, CRISPR-Cas effectors are adopted for biosensor construction due to its adjustable properties, such as simplicity of design, easy operation, collateral cleavage activity, and high biocompatibility. Aptamers' excellent sensitivity, specificity, in vitro synthesis, base-pairing, labeling, modification, and programmability has made them an attractive molecular recognition element for inclusion in CRISPR-Cas systems. Here, we review current advances in aptamer-based CRISPR-Cas sensors. We briefly discuss aptamers and the knowledge of Cas effector proteins, crRNA, reporter probes, analytes, and applications of target-specific aptamers. Next, we provide fabrication strategies, molecular binding, and detection using fluorescence, electrochemical, colorimetric, nanomaterials, Rayleigh, and Raman scattering. The application of CRISPR-Cas systems in aptamer-based sensing of a wide range of biomarkers (disease and pathogens) and toxic contaminants is growing. This review provides an update and offers novel insights into developing CRISPR-Cas-based sensors using ssDNA aptamers with high efficiency and specificity for point-of-care setting diagnostics.

16.
Int J Mol Sci ; 23(24)2022 Dec 17.
Article En | MEDLINE | ID: mdl-36555761

Cysteine-cysteine chemokine receptor 5 (CCR5) has been discovered as a co-receptor for cellular entry of human immunodeficiency virus (HIV). Moreover, the role of CCR5 in a variety of cancers and various inflammatory responses was also discovered. Despite the fact that several CCR5 antagonists have been investigated in clinical trials, only Maraviroc has been licensed for use in the treatment of HIV patients. This indicates that there is a need for novel CCR5 antagonists. Keeping this in mind, the present study was designed. The active CCR5 inhibitors with known IC50 value were selected from the literature and utilized to develop a ligand-based common feature pharmacophore model. The validated pharmacophore model was further used for virtual screening of drug-like databases obtained from the Asinex, Specs, InterBioScreen, and Eximed chemical libraries. Utilizing computational methods such as molecular docking studies, molecular dynamics simulations, and binding free energy calculation, the binding mechanism of selected inhibitors was established. The identified Hits not only showed better binding energy when compared to Maraviroc, but also formed stable interactions with the key residues and showed stable behavior throughout the 100 ns MD simulation. Our findings suggest that Hit1 and Hit2 may be potential candidates for CCR5 inhibition, and, therefore, can be considered for further CCR5 inhibition programs.


HIV Fusion Inhibitors , HIV Infections , Humans , Maraviroc/pharmacology , HIV/metabolism , Molecular Docking Simulation , Cysteine , HIV Infections/drug therapy , Pharmacophore , Receptors, Chemokine , Molecular Dynamics Simulation , Receptors, CCR5/metabolism , HIV Fusion Inhibitors/pharmacology , HIV Fusion Inhibitors/chemistry
17.
Nucleic Acids Res ; 50(18): 10544-10561, 2022 10 14.
Article En | MEDLINE | ID: mdl-36161329

Since plants are sessile organisms, developmental plasticity in response to environmental stresses is essential for their survival. Upon exposure to drought, lateral root development is suppressed to induce drought tolerance. However, the molecular mechanism by which the development of lateral roots is inhibited by drought is largely unknown. In this study, the auxin signaling repressor IAA15 was identified as a novel substrate of mitogen-activated protein kinases (MPKs) and was shown to suppress lateral root development in response to drought through stabilization by phosphorylation. Both MPK3 and MPK6 directly phosphorylated IAA15 at the Ser-2 and Thr-28 residues. Transgenic plants overexpressing a phospho-mimicking mutant of IAA15 (IAA15DD OX) showed reduced lateral root development due to a higher accumulation of IAA15. In addition, MPK-mediated phosphorylation strongly increased the stability of IAA15 through the inhibition of polyubiquitination. Furthermore, IAA15DD OX plants showed the transcriptional downregulation of two key transcription factors LBD16 and LBD29, responsible for lateral root development. Overall, this study provides the molecular mechanism that explains the significance of the MPK-Aux/IAA module in suppressing lateral root development in response to drought.


Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Droughts , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Plant Roots/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Antioxidants (Basel) ; 11(8)2022 Aug 22.
Article En | MEDLINE | ID: mdl-36009349

Selenium (Se) is an essential micro-element for many organisms, including Chlamydomonas reinhardtii, and is required in trace amounts. It is obtained from the 21st amino acid selenocysteine (Sec, U), genetically encoded by the UGA codon. Proteins containing Sec are known as selenoproteins. In eukaryotes, selenoproteins are present in animals and algae, whereas fungi and higher plants lack them. The human genome contains 25 selenoproteins, most of which are involved in antioxidant defense activity, redox regulation, and redox signaling. In algae, 42 selenoprotein families were identified using various bioinformatics approaches, out of which C. reinhardtii is known to have 10 selenoprotein genes. However, the role of selenoproteins in Chlamydomonas is yet to be reported. Chlamydomonas selenoproteins contain conserved domains such as CVNVGC and GCUG, in the case of thioredoxin reductase, and CXXU in other selenoproteins. Interestingly, Sec amino acid residue is present in a catalytically active domain in Chlamydomonas selenoproteins, similar to human selenoproteins. Based on catalytical active sites and conserved domains present in Chlamydomonas selenoproteins, we suggest that Chlamydomonas selenoproteins could have a role in redox regulation and defense by acting as antioxidants in various physiological conditions.

19.
Biomaterials ; 287: 121617, 2022 Aug.
Article En | MEDLINE | ID: mdl-35728408

Malathion is an organophosphate chemical (OPC) and a toxic contaminant that adversely impacts food quality, human health, biodiversity, and the environment. Due to its small size and unavailability of sensitive sensors, detection of malathion remains a challenging task. Often chromatographic methods employed to analyze OPCs suffer from several shortcomings, including cost, immobility, laboriousness, and unsuitability for point-of-care settings. Hence, developing a specific and sensitive diagnostic sensor for quick and inexpensive food testing is essential. We discovered four unique malathion-specific ssDNA aptamers; designed two independent sensing strategies using fluorescence labeling and Thioflavin T (ThT) displacement. Selected aptamers formed the G4-quadruplex-like (G4Q) structure, which helped develop a label-free detection approach with a 2.01 ppb limit of detection. Additionally, 3D structures of aptamers were generated and validated using a series of computational modeling programs. Furthermore, we explored structural features using CD spectroscopy and molecular docking, probing ligands' binding mode, and revealed vital intermolecular interactions with aptamers. Subsequently, the novel sensors were optimized to detect malathion from food samples. The novel sensors could be further developed to meet the demands of sensing and quantifying toxic contaminants from real food samples in field conditions.

20.
Front Biosci (Landmark Ed) ; 27(3): 92, 2022 03 09.
Article En | MEDLINE | ID: mdl-35345324

BACKGROUND: Diazinon is a widely used organophosphorus neurotoxic insecticide. It is a common environmental contaminant and a hazardous agri-waste. Its detection is critical to control entry into food systems and protect the environment. METHODS: In this study, three single-stranded DNA aptamers specific for diazinon were discovered using the systematic evolution of ligands by the exponential enrichment (SELEX) process. Since aptamer-based sensors are quick and straightforward to analyze, they could potentially replace the time-consuming and labor-intensive traditional methods used for diazinon detection. RESULTS: Here, we show the engineering of novel sensors for diazinon detection with a high affinity (Kd), specificity, and high sensitivity at the ppb level. Moreover, the aptamers were helpful in the simultaneous detection of two other structurally relevant insecticides, fenthion, and fenitrothion. Furthermore, the real vegetable and fruit samples confirmed the specific detection of diazinon using DIAZ-02. CONCLUSIONS: We developed novel biosensors and optimized the assay conditions for the detection of diazinon from food samples, such as vegetables and fruit. The biosensor could be adopted to analyze toxicants and contaminants in food, water, and nature as point-of-care technology.


Aptamers, Nucleotide , Biosensing Techniques , Insecticides , Biosensing Techniques/methods , Diazinon/analysis , Diazinon/toxicity , Fruit/chemistry , Insecticides/toxicity , Vegetables
...